Memory Based Stochastic Optimization for Validation and Tuning of Function Approximators

نویسنده

  • Artur Dubrawski
چکیده

This paper focuses on the optimization of hyper-parameters for function approximators. We describe a kind of racing algorithm for continuous optimization problems that spends less time evaluating poor parameter settings and more time honing its estimates in the most promising regions of the parameter space. The algorithm is able to automatically optimize the parameters of a function approximator with less computation time. We demonstrate the algorithm on the problem of nding good parameters for a memory based learner and show the tradeoos involved in choosing the right amount of computation to spend on each evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Coordinated Design of UPFC Damping Controller and PSS Using Chaotic Optimization Algorithm

A Chaotic Optimization Algorithm (COA) based approach for the robust coordinated design of the UPFC power oscillation damping controller and the conventional power system stabilizer has been investigated in this paper. Chaotic Optimization Algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool fo...

متن کامل

Automatic tuning of a behavior-based guidance algorithm for formation flight of quadrotors

This paper presents a tuned behavior-based guidance algorithm for formation flight of quadrotors. The behavior-based approach provides the basis for the simultaneous realization of different behaviors such as leader following and obstacle avoidance for a group of agents; in our case they are quadcopters. In this paper optimization techniques are utilized to tune the parameters of a behavior-bas...

متن کامل

Assessment of Cost Effectiveness of a Firm Using Multiple Cost Oriented DEA and Validation with MPSS based DEA

Data Envelopment Analysis (DEA) is a nonparametric tool for discriminating the best performers from a number of homogenous Decision Making Units (DMU). Cost oriented DEA models identify those best DMUs which run cost efficient process. This paper validates the outcome derived from the Ideal Frontier (mentioned in Sarkar. S (2014)) derived from non-central Principal Component Analysis and a slac...

متن کامل

A Subjective Review of the State of the Art in Model - Based Parameter Tuning

Over recent years, the model-based parameter tuning of computational systems has become an emergent research topic. When the considered systems are subject of stochastic effects, the parameter tuning can be seen as a noisy optimization task, as often faced in production engineering. In this paper, the current research on parameter optimization is discussed based on experiences from an engineeri...

متن کامل

Market Adaptive Control Function Optimization in Continuous Cover Forest Management

Economically optimal management of a continuous cover forest is considered here. Initially, there is a large number of trees of different sizes and the forest may contain several species. We want to optimize the harvest decisions over time, using continuous cover forestry, which is denoted by CCF. We maximize our objective function, the expected present value, with consideration of stochastic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997